Signomial Classification Method with0-regularization
نویسندگان
چکیده
منابع مشابه
An enhanced logarithmic method for signomial programming with discrete variables
Signomial programming problems with discrete variables (SPD) appear widely in real-life applications, but they are hard to solve. This paper proposes an enhanced logarithmic method to reformulate the SPD problem as a mixed 0-1 linear program (MILP) with a minimum number of binary variables and inequality constraints. Both of the theoretical analysis and numerical results strongly support its su...
متن کاملClassification by Discriminative Regularization
Classification is one of the most fundamental problems in machine learning, which aims to separate the data from different classes as far away as possible. A common way to get a good classification function is to minimize its empirical prediction loss or structural loss. In this paper, we point out that we can also enhance the discriminality of those classifiers by further incorporating the dis...
متن کاملTransductive Classification via Dual Regularization
Semi-supervised learning has witnessed increasing interest in the past decade. One common assumption behind semi-supervised learning is that the data labels should be sufficiently smooth with respect to the intrinsic data manifold. Recent research has shown that the features also lie on a manifold. Moreover, there is a duality between data points and features, that is, data points can be classi...
متن کامل3D Inversion of Magnetic Data through Wavelet based Regularization Method
This study deals with the 3D recovering of magnetic susceptibility model by incorporating the sparsity-based constraints in the inversion algorithm. For this purpose, the area under prospect was divided into a large number of rectangular prisms in a mesh with unknown susceptibilities. Tikhonov cost functions with two sparsity functions were used to recover the smooth parts as well as the sharp ...
متن کاملVolume Regularization for Binary Classification
We introduce a large-volume box classification for binary prediction, which maintains a subset of weight vectors, and specifically axis-aligned boxes. Our learning algorithm seeks for a box of large volume that contains “simple” weight vectors which most of are accurate on the training set. Two versions of the learning process are cast as convex optimization problems, and it is shown how to sol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IE interfaces
سال: 2011
ISSN: 1225-0996
DOI: 10.7232/ieif.2011.24.2.151